
RDS2 Integration Quickstart

Physical Connection

Connect the 3-pin "Drone" port on the winch board to a spare telemetry port (telem1 or telem2)
on your flight controller. If your unit did not ship with a cord, see the photo below for how to
make it:

Flight Controller Parameters:
Configure the port you used as a MAVLink2 port, and ensure the baudrate matches the winch
(which by default uses 9600). Parameters can be changed by connecting the vehicle to QGC or
Mission Planner.

Ardupilot
See here for details, but you should just need to change two parameters. For example, if using
the telem1 port at baud 9600:

● SERIAL1_PROTOCOL to MAVLink2 (int value 2)
● SERIAL1_BAUD to 9600 (int value 9).

PX4
See here for details. The interface should be configured to enable forwarding, with MODE to
CUSTOM. As an example, to use mavlink interface #2 with the TELEM2 port at baud 9600:

● Set MAV_2_CONFIG to TELEM2
● Reboot the drone (so the additional configuration parameters appear)
● Set MAV_2_FORWARD to 1 (to enable forwarding between groundstation/pc and RDS2)
● Set MAV_2_MODE to CUSTOM (to ensure no MAVLink messages are sent by the FC)
● Set SER_TELEM2_BAUD to 9600 (to match the baudrate set in the RDS2 parameters)

https://ardupilot.org/copter/docs/parameters.html#serial1-protocol
https://docs.px4.io/main/en/peripherals/serial_configuration.html

MAVLink Interface
**If you are using A2ZQGC, all of the below is handled by the software. This section is for users
implementing their own control on a ground station or companion computer.

Once the RDS2 is connected and parameters configured, your GCS should start getting
WINCH_STATUS messages and HEARTBEAT messages from, by default, System 1 (usually
the drone), Component 7 (to identify the winch). If you send MAV_CMD_DO_WINCH messages
to this system/component (this is important, check those IDs!), you can control the RDS2.

Parsing RDS2 Status
The message streamed from the RDS2 is of type WINCH_STATUS. The specific interpretation
of the fields differs slightly from the MAVLink spec. Additionally, a single high-level RDS2 state
indicator is packed into the status field. See the table below:

Field
Name

Type Units Standard
Description

RDS2 notes

time_usec uint64_t us Timestamp
(synced to UNIX
time or since
system boot).

As described

line_lengt
h

float m Length of line
released. NaN if
unknown

As described

speed float m/s Speed line is
being released or
retracted. Positive
values if being
released, negative
values if being
retracted, NaN if
unknown

As described, but may
have a scale factor (ie
not directly in m/s)

https://mavlink.io/en/messages/common.html#WINCH_STATUS

tension float kg Tension on the
line. NaN if
unknown

Tension is not directly
measured. This field
reports the coil
current of the drive
motor.

voltage float V Voltage of the
battery supplying
the winch. NaN if
unknown

As described

current float A Current draw from
the winch. NaN if
unknown

This reflects the
current draw of the
control board only, not
including winch motor.

temperatu
re

int16_t degC Temperature of
the motor.
INT16_MAX if
unknown

This reflects the
temperature of the
clutch servomotor

status uint32_t Status flags as
encoded in
WINCH_STATUS
_FLAGS

Not all fields are used.
Additionally a
high-level status enum
is packed into the last
8 bits of this field. See
table below.

The ‘status’ field does contain most of the flags in the spec, but we suggest only
using the RDS2_STATUS enum packed into the last 8 bits of the field for your
primary status display as they are more useful for understanding the state of the
system. The code below will extract this state:

mavlink_msg_winch_status_decode(&message, &winch_status);

int rds2_state = winch_status.status >> 24;

https://mavlink.io/en/messages/common.html#MAV_WINCH_STATUS_FLAG
https://mavlink.io/en/messages/common.html#MAV_WINCH_STATUS_FLAG
https://mavlink.io/en/messages/common.html#MAV_WINCH_STATUS_FLAG
https://mavlink.io/en/messages/common.html#MAV_WINCH_STATUS_FLAG

This table shows the interpretation of this state enum:

Int
Value

State Name Description

0 ATTACHED Package or hook is secured at the top with no
line out.

1 IN_AIR Package or hook is hanging, spool locked, in the
air with some line out.

2 ON_GROUND Package or hook is on the ground, spool locked,
with line out.

3 FREEFALL UNUSED FOR RDS2

4 BRAKING UNUSED FOR RDS2

5 REELING_DOWN Payload is being actively lowered.

6 REELING_UP Payload is being actively hauled upward.

7 FREEWHEEL The spool is unlocked and unpowered, for
loading or emergency release.

8 UNUSED UNUSED

9 DEV Unit is reading/writing logs to SD

In addition, the RDS2 will stream DISTANCE_SENSOR measurements from its
downward-facing LIDAR unit.

https://mavlink.io/en/messages/common.html#DISTANCE_SENSOR

Commanding the RDS2

Since the RDS2 handles low-level functions independently, it does not use most of the
parameters in the MAV_CMD_DO_WINCH. The only parameter to specify is the parameter 2,
“Action”.

Param
(:Label)

Description

1: Instance Unused (component ID is used to
differentiate multiple systems)

2: Action Action to perform. **The RDS2 does NOT
use the stock WINCH_ACTION enum, see
the RDS2_ACTION below.

3: Length Unused (winch automatically detects
ground)

4: Rate Unused (winch accelerates and decelerates
automatically)

5 Empty.

6 Empty.

7 Empty.

RDS2_ACTION:
​​

Value Command
name

Description Allowable States

0 UNUSED N/A

1 DELIVER Convenience function: Performs
a reeldown to the ground,
followed automatically by a
reelup. Should only be allowed
when state is ATTACHED.

ATTACHED

2 LOCK Locks the spool, either to stop a
REELUP/REELDOWN/DELIVER
, or to regain hold of the package
after a FREEWHEEL.

REELING_DOWN

REELING_UP

FREEWHEEL

3 FREEWHEEL Disengages the clutch, allowing
the spool to spin freely. Used in
an emergency to release the
tether and fly away.

ATTACHED

IN_AIR

ON_GROUND

4 REELUP Reels the package or hook up
until either it reaches the top or
is manually stopped with a
LOCK.

IN_AIR

ON_GROUND

5 REELDOWN Reels the package or hook down
until either it reaches the ground
or is manually stopped with a
LOCK.

ATTACHED

IN_AIR

ON_GROUND

User Interface Suggestions
To implement a control panel for the RDS2, we suggest a panel of buttons, one for each
required RDS2_ACTION, and a readout panel to display information from the WINCH_STATUS
and DISTANCE_SENSOR messages.

For the main flight view, we suggest including RDS2_STATE, line_length, speed, and
current_distance (from DISTANCE_SENSOR). The other fields may be placed in a separate
detail menu.

Additionally, we suggest only enabling each button if the RDS2 is in an allowable RDS2_STATE
per the RDS2_ACTION table, showing the button as disable otherwise.

